−expansion method
نویسندگان
چکیده
The exact traveling wave solutions of the nonlinear variable coefficients Burgers-Fisher equation and the generalized Gardner equation with forced terms can be found in this article using the generalized ( ′ G )-expansion method. As a result, hyperbolic, trigonometric and rational function solutions with parameters are obtained. When these parameters are taken special values, the solitary wave solutions are derived from the hyperbolic function solutions. It is shown that the proposed method is direct, effective and can be applied to many other nonlinear evolution equations in the mathematical physics. Key–Words: Nonlinear evolution equations; Generalized ( ′ G )-expansion method; Variable coefficients BurgersFisher equation with the forced term; Variable coefficients generalized Gardner equation with the forced term, Exact solutions.
منابع مشابه
Application of G'/G-expansion method to the (2+1)-dimensional dispersive long wave equation
In this work G'/G-expansion method has been employed to solve (2+1)-dimensional dispersive long wave equation. It is shown that G'/G-expansion method, with the help of symbolic computation, provides a very effective and powerful mathematical tool, for solving this equation.
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملElliptic Function Solutions of (2+1)-Dimensional Breaking Soliton Equation by Sinh-Cosh Method and Sinh-Gordon Expansion Method
In this paper, based on sinh-cosh method and sinh-Gordon expansion method,families of solutions of (2+1)-dimensional breaking soliton equation are obtained.These solutions include Jacobi elliptic function solution, soliton solution,trigonometric function solution.
متن کاملNumerical solution of Voltra algebraic integral equations by Taylor expansion method
Algebraic integral equations is a special category of Volterra integral equations system, that has many applications in physics and engineering. The principal aim of this paper is to serve the numerical solution of an integral algebraic equation by using the Taylor expansion method. In this method, using the Taylor expansion of the unknown function, the algebraic integral equation system becom...
متن کاملApplication of the tan(phi/2)-expansion method for solving some partial differential equations
In this paper, the improved -expansion method is proposed to solve the Kundu–Eckhaus equation and Gerdjikov–Ivanov model. The applied method are analytical methods to obtaining the exact solutions of nonlinear equations. Here, the aforementioned methods are used for constructing the soliton, periodic, rational, singular and solitary wave solutions for solving some equations. We obtained furthe...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کامل